Calendar
Week 1 - Course Intro
- Apr 3
- Lecture 1 Review I
- HW 0 out
- Point estimation, MLE, Linear regression and classification
- Reading:
- PML1 1.1-1.4, 11.1-11.2, 10.1-10.2
- (Optional) ESL 1, 2.3.1, 3.1-3.2, 4.1, 4.4.1-4.4.2
- Apr 5
- Lecture 2 Reiview II
- HW 0 due (4/7 Fri) HW 1 out
- CQ1 out: Intro
- Assessing performance, Overfitting, Bias-variance tradeoff
- Reading:
- ESL 7.1-7.4
- (Optional) PML1 4.7.6
Week 2, 3, 4 - Non-linear regression and classification
- Apr 10
- Lecture 3 Decision trees I
-
- Decision trees, Overfitting in decision trees
- Reading:
- PML1 18.1
- (Optional) ESL 9.2.1-9.2.3
- Apr 12
- Lecture 4 Decision trees II
-
- CQ1 due: Intro
- Boosting, Adaboost
- Reading:
- PML1 18.4-18.5
- (Optional) ESL 9.2.4, 10.1-10.10, 15.1-15.4,
- (Optional) Explaining Adaboost
- Apr 17
- Lecture 5 Decision trees III
-
- AdaBoost cont’d, Gradient boosting
- Reading:
- PML1 5.1.4
- Apr 19
- Lecture 6 Decision trees IV
- HW 1 due HW 2 out
- CQ2 out: Decision trees, boosting, random forests
- Gradient boosting cont’d, Random forests, Precision and recall
- Reading:
- PML1 5.1.4
- Apr 24
- Lecture 7 Deep learning I
-
- Deep learning intro, Single and multilayer networks
- Reading:
- PML2 16.1-16.3
- Apr 26
- Lecture 8 Deep learning II
-
- CQ2 due: Decision trees, boosting, random forests
- Back propagation
- Reading:
- PML2 16.4
- May 1
- Lecture 9 Deep learning III
- Project Proposal due
- Convnets, Transfer learning
- Reading:
- See L6 reading
Week 5, 6, 7, 8 - Unsupervised Learning
- May 3
- Lecture 10 Clustering I
- HW 2 due HW 3 out
- CQ3 out: Deep learning
- Clustering and unsupervised learning, K-means, Mixure models, Gaussians
- Reading:
- PML1 21.1, 21.3
- (Optional) ESL 14.3.6
- May 8
- Lecture 11 Clustering II
-
- Mixture of Gaussians, EM algorithm for MoG
- Reading:
- PML1 21.4, 8.7
- PML2 29.2, 6.6.3-6.6.4
- May 10
- Lecture 12 Clustering III
-
- CQ3 due: Deep learning
- EM more generally, Connection to K-means, Hierarchical clustering intro
- Reading:
- ESL 14.3.7, 14.3.12
- PML1 21.2
- May 15
- Lecture 13 Latent embeddings I
-
- Hierarchical clustering, PCA
- Reading:
- PML1 20.1 20.2
- PML2 29.3, 29.6
- (Optional) ESL 14.5.1, 14.7.1-14.7.2
- May 17
- Lecture 14 Latent embeddings II
- HW 3 due HW 4 out
- CQ4 out: K-means, MoG, EM, Hierarchical clustering
- PCA more formally, Factor analysis
- Reading:
- PML1 20.3
- PML2 21.1-21.3, 22.1-22.2
- May 22
- Lecture 15 Matrix Factorization I
- Project Midway due
- EM algorithm for FA, Autoencoders, VAEs
- Reading:
- PML1 22.1
- May 24
- Lecture 16 Matrix Factorization II
-
- CQ4 due: K-means, MoG, EM, hierarchical clustering
- VAEs cont’d; Recommender systems intro, Collaborative filtering via matrix factorization
- Reading:
- PML2 16.3.5, 29.5.1
- (Optional) ESL 14.6
Week 9, 10 - Time Series
- May 31
- Lecture 17 Time Series I
- HW 4 due
- CQ5 out: PCA, autoencoders, MF&FA, HMMs
- June 5
- Lecture 18 Time Series II
-
- June 7
- Lecture 19 Time Series III
-
- CQ5 due: PCA, autoencoders, MF&FA, HMMs